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Abstract - This paper will discuss the use of 
diagnostic simulations to generate the Fault 
Resolution metric for a system or equipment. 
Simulation-based calculations are free of some 
of the biases that inhere within traditional, math-
based approaches. Moreover, a simulation-
based evaluation of the replacement of failed 
items also provides a basis for the calculation of 
the effect of diagnostic ambiguity upon false 
removals—including the estimated costs that 
can be attributed to removals beyond those that 
would be expected during a product’s intended 
lifetime.  

Introduction 

In MIL-STD-2165 (Testability Program for Electronic 
Systems and Equipments), two separate equations 
are provided for the calculation of Fault Resolution—
a quantitative Testability metric that measures how 
well a diagnostic sequence or strategy is able to 
isolate to fault groups that can be repaired with no 
more than a given number of replacements [1]. Each 
of these two equations corresponds to a different 
maintenance philosophy. The first equation—which 
is used when the selected system or equipment is 
maintained using block replacement (where all items 
in each isolated fault group are replaced or repaired 
at the same time)—has, with a few minor changes, 
become the most widely used method for calculating 
this metric within Testability analyses. The second 
equation—which attempts to quantify the Fault 
Resolution that results when a system is maintained 
using serial or prioritized replacement (where the 
components in isolated fault groups are replaced 
one at a time with intervening retesting)—has also 
been used to generate this metric. MIL-HDBK-472 

(Maintainability Prediction) also provides two 
equations to be used when assessing a test 
sequence or strategy’s ability to unambiguously 
isolate malfunctions: Percent isolation to a single 
replacement item (RI) and Percent isolation to a 
group of RIs [2]. Although these equations do not 
explicitly address different maintenance approaches, 
they can be interpreted in a manner that’s applicable 
for systems maintained using either block or serial 
replacement.  

These two sets of equations are representative of 
the various math-based techniques that have been 
used to calculate a single metric—usually referred to 
as either Fault Isolation or Fault Resolution—that 
quantifies the extent to which the diagnostics for a 
given system or equipment is able to unambiguously 
isolate malfunctioning items and thereby eliminate 
superfluous maintenance actions. Often expressed 
as a “weighted percentage” (a percentage of the 
overall system failure rate), this metric is typically 
calculated by summing failure rates for all fault 
groups for which a failure can be corrected with the 
specified number of replacements.  

Although the equations in both MIL-STD-2165 and 
MIL-HDBK-472 call for the summing of component 
(module or part) failure rates, it has long been 
known that these calculations are more accurate 
when the failure rates are broken down by function 
or failure mode. Moreover, for diagnostic strategies 
that can isolate a single function or failure mode to 
more than one different fault group (such as 
multiple-failure strategies, which are designed to 
accommodate the “masking” effect that can often 
result from multiple, simultaneous malfunctions), the 
accumulated failure rates are often broken down 
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even more. Regardless, however, of the level at 
which the accumulating is performed, this metric is 
nearly always calculated by examining all fault 
groups that can be isolated by the diagnostics and 
summing the appropriate failure rates for the fault 
groups that meet the given criteria. Within this 
paper, we shall refer to calculations of this type as 
traditional or deterministic approaches to calculating 
the metric.  

Three Problems with Traditional Fault 
Resolution Calculations 

Now, there are several inherent problems with the 
traditional methods of calculating Fault Resolution 
that can result in serious inaccuracies when the 
resulting values are used to predict actual diagnostic 
performance.  First of all, traditional calculations are 
ahistoric—statistics are calculated across the entire 
set of possible fault groups without any concern for 
the order in which the components might fail. At first 
glance, this would seem to be a good thing—after 
all, we wouldn’t want our diagnostic predictions to be 
tied to the assumption that individual components 
will invariably fail in a predetermined order. Ahistoric 
calculations of this type, however, are based upon 
an invalid assumption—that the functions isolated 
within each fault group will, over time, tend to fail in 
accordance with their respective failure probabilities. 
On the contrary, most complex systems contain 
many functions that do not fail anywhere near as 
frequently as their reliability estimates indicate, 
regardless of how long the system is fielded. The 
reason for this lies not in the reliability of these 
functions, but rather in the relative unreliability of 
other functions—both other functions of the same 
components and other functions that reside in the 
same replacement group. 

Imagine, if you will, a part that is comprised of two 
functions (function A and B), one of which (A) fails 
twenty times more frequently than the other (B). 
Because the entire component is replaced each time 
that function A malfunctions, function B is not given 
the chance to fail. Although a failure to function B is 
still possible, its relative likelihood would be greatly 
diminished (in many systems, this function would 
simply never fail). Generally speaking, the failure 
frequency experienced for the different functions on 
a multi-function component will not be as high as the 
estimated failure rates for those functions would 
imply. Although the net effect upon Fault Resolution 
is more significant when there is a large difference in 
the failure rates of the individual functions, there can 
still be a substantial reduction in failure frequency 

when all functions of a component have the same 
failure rate (since some functional failures will be 
postponed each time that the item is replaced). 

This same situation can arise when functions from 
different components exist in the same replacement 
group. Take, for example, two functions (X and Y) 
that have significantly different failure rates (say, X 
fails twenty times more frequently than Y), and yet, 
because they both reside in a difficult-to-access 
location, they are always replaced as a pair (a 
recommended practice if function Y were relatively 
inexpensive to replace). Failures to function Y would 
be perpetually deferred, since it would be replaced 
with each failure to function X.  

Because deterministic Fault Resolution calculations 
do not take these situations into consideration, they 
are inevitably biased towards the functions that fail 
more frequently. Put another way, they fail to show 
that many reliable functions fail even less frequently 
than their assigned failure rates would imply. If these 
more reliable functions can be uniquely isolated, 
then the Fault Resolution statistics would be falsely 
skewed toward the smaller group sizes. If, on the 
other hand, these more reliable functions are 
isolated in larger groups, then the Fault Resolution 
statistics would predict a diagnostic performance 
that is substantially worse than that which would be 
actually realized in the field. 

A second problem with traditional Fault Resolution 
calculations is that they can only forecast diagnostic 
performance over an arbitrarily large time interval. 
Failure rates, it must be remembered, are not 
predictions, but rather estimated means. Because 
the Fault Resolution is traditionally calculated by 
summing these means, it will not properly reflect the 
diagnostic behavior of a system until it has been 
fielded sufficiently long that the rates of actual failure 
occurrences have begun to approach their means.  
Before this will be true, all functions will have to have 
failed several times. Since many of the systems 
functions will inevitably be highly reliable, this means 
that the system may have to be fielded an arbitrarily 
large amount of time before it will approach the 
diagnostic performance predicted by traditional Fault 
Resolution calculations.  

Because Fault Resolution is traditionally calculated 
using all failures in all possible fault groups, they will 
inevitably include functional failures that are highly 
unlikely during the expected lifetime of the system. 
This results in an additional bias toward functions 
that fail frequently. Once again, if these functions are 
isolated within relatively small fault groups, then the 

 



 

Fault Resolution figures will be more attractive than 
the diagnostic performance that is actually achieved 
during the system’s expected lifetime. On the other 
hand, if these highly reliable functions are isolated 
within relatively large groups, then the prediction will 
be less attractive than actual system performance. 

A third problem with traditional, deterministic Fault 
Resolution calculations is that they do not 
distinguish between the different failure 
combinations that will result in isolation to the same 
fault group. This is not a problem with either single-
fault isolation strategies (that is, strategies that 
assume that only a single function can be 
malfunctioning as the system is diagnosed) or 
systems that are maintained solely using block 
replacement (or better yet, systems for which all 
failures can be unambiguously isolated to a single 
malfunctioning component). When, however, a 
system is diagnosed using a multiple-fault isolation 
strategy (one that is able to accommodate multiple, 
simultaneous malfunctions), then serial replacement 
of suspected items may result in different diagnostic 
behavior when the same fault group is isolated due 
to different combinations of failed functions. If the 
replacement of an item would result in isolation to a 
different fault group—even if it’s a subset of the 
originally isolated group—then a fault has been 
successfully resolved. A fault group might, for one 
failure combination, require two replacement actions 
to observably correct a failure; the same fault group, 
however, for a different failure combination, might 
observably correct one failure with one replacement 
and another failure with a second replacement. 
Since there is no ambiguity involved for this second 
failure combination (each replacement observably 
corrects a malfunction) this would be recorded as 
two replacements of one item each (rather than as 
one replacement of two items).  

Traditional Fault Resolution calculations, once 
again, do not distinguish between the different 
diagnostic behavior that would result when a fault 
group can be isolated due to different failure 
combinations. When a multiple-failure strategy is 
used to diagnose a system that is maintained using 
serial replacement, traditional ways of calculating 
Fault Resolution will result in a bias toward the 
larger group sizes.  

Several Advantages of Monte Carlo 
Diagnostic Simulations 

Diagnostic simulations have long been used to 
calculate Reliability and Maintainability predictions. 

Their application within Testability analysis, although 
similar in conception, has been less common due in 
part to entrenched engineering practices. Testability 
analyses, although most profitably employed in early 
phases of the design process, have frequently been 
dismissed as mere measures of contract compliance 
and subsequently postponed until the design has 
been more or less fixed and most reliability concerns 
have already been addressed. When Testability has 
indeed been examined early in the design process, 
analysts have at times assumed that, because the 
figures are calculated using preliminary data, any 
effort spent to achieve additional accuracy would 
result in diminishing returns. Assumptions like 
these—exacerbated, perhaps, by the difficulty of 
finding a diagnostic engineering tool that generates 
simulation-based metrics—have prevented the 
Testability community from taking advantage of the 
same techniques that have met with such success in 
the Reliability and Maintainability worlds. 

Monte Carlo simulations—in which individual events 
are generated randomly, yet in accordance with their 
assigned rates and distributions—are ideally suited 
for the simulation of diagnostic behavior. First of all, 
they can be easily adapted to accommodate any 
desired isolation or maintenance philosophy. For 
analyses that assume single-point failures, the 
diagnostic strategy would be immediately invoked 
each time a malfunction occurs. For multiple-failure 
strategies, on the other hand, the simulation can 
account for any delay that may exist between a 
failure and its diagnosis. During this delay—which 
can either be a fixed interval (as would be the case 
with scheduled maintenance) or probabilistic (when 
the interval between runs of the diagnostics falls into 
a distribution of its own)—other malfunctions might 
occur. Of course, the longer the delay between 
diagnostic sessions, the greater the likelihood that 
multiple, simultaneous malfunctions will exist as the 
diagnostics are performed. In order to simulate the 
real-life deployment of the system or equipment, 
mission profiles can be developed that account for 
different states in which the system might exist, as 
well as the use of multiple diagnostic approaches 
(failure-driven, periodic, prognostic, etc.). Complex 
maintenance philosophies (combinations of block, 
serial and hybrid replacement strategies) can also 
be easily handled by a Monte Carlo simulation. 

The random number generator that is at the heart of 
all Monte Carlo simulations can easily accommodate 
any number of standard failure distribution curves. 
Testability metrics (such as Fault Resolution) have 
traditionally been calculated by adding up estimated 
item Failure Rates. Each Failure Rate—whether 

 



 

derived from empirical data or from theoretical 
projection—is the multiplicative inverse of the item 
MTBF (Mean Time Between Failures) that has been 
scaled to represented the expected mean number of 
failures per million hours. Regardless of the form in 
which it is expressed, this standard reliability metric 
is a mean that has been removed from its required 
statistical context. It is no longer possible to tell 1) 
the time interval over which the mean is expected to 
hold true, or 2) the specific distribution curve for 
which the mean was calculated. Because of this, 
MTBFs are much maligned in some quarters. Since 
Monte Carlo diagnostic simulations take into account 
not only the MTBF, but also the specific failure 
distribution curve for each component, the analyst is 
able to find answers to whole new types of 
questions, such as “What would be the net effect on 
our ability to isolate faults if we were to replace this 
component with one that is less reliable, yet will 
exhibit fewer infant failures?” Diagnostic simulations 
ultimately empower the analyst, allowing him or her 
to make sophisticated decisions based on realistic 
projections of the effects that small or subtle 
changes might have upon system performance. 

Simulation-Based Fault Resolution and 
False Removal Calculations  

When the Fault Resolution metric is calculated using 
data collected from a set of Monte Carlo diagnostic 
simulations, it is not subject to the biases that inhere 
within traditional Fault Resolution calculations. First 
of all, any properly-designed diagnostic simulation 
will automatically take into account the replacement 
history of each item when computing functional 
failures. When a component is replaced—regardless 
of whether the part had actually failed, was falsely 
removed due to diagnostic ambiguity, or was 
intentionally replaced prematurely as the result of a 
prognostic decision—the next failure to each 
function of that component will be recalculated from 
that point forward. In other words, each simulated 
functional failure takes into consideration the 
maintenance history (in particular, the elapsed time 
since the most recent replacement) of its respective 
component.  

Because diagnostic simulations can be performed 
over any desired time interval, the resulting statistics 
do not assume an arbitrarily long deployment. On 
the contrary, a short simulation might be run to 
ascertain the types of failures that might be 
expected during, say, the first year that a system is 
deployed. Because simulated malfunctions occur not 
merely in accordance with the component MTBF, 
but also with its assigned distribution curve, a certain 
degree of randomness is preserved. To minimize the 
negative effect of this randomness, the final metric 
represents an average of data that has been 
gathered from a large number of individually 
simulated lifetimes. To increase the accuracy of the 
calculation, additional simulation runs should be 
averaged into the metric. Increasing the time of the 
simulation, on the other hand, will result not in more 
accurate numbers, but rather in estimated 
performance over a longer time interval. If a given 
system or equipment is expected to be fielded for 
thirty years, then metrics that are generated using 
simulated lifetimes longer than that would 
erroneously account for failures that would not be 
likely to occur during the useful life of the system. 
Unlike traditional Fault Resolution calculations 
(which, remember, are sums of means) the 
accuracy of simulation-based calculations is not 
constrained by the time intervals over which 
component MTBFs are assumed to hold true. 
Furthermore, because simulations allow the same 
metric to be calculated over several different time 
intervals, analysts can formulate long-term 
maintenance plans, rather than assume that one 

Finally, because Monte Carlo simulations can be 
easily programmed using standard event processing 
algorithms, they can provide an elegant method for 
analyzing a wealth of secondary statistics by simply 
scanning through the events generated during a 
simulated run. In the Maintainability community, this 
capability has already been tapped to generate Life 
Cycle Cost and Operational Availability estimates. A 
sophisticated diagnostic simulation, however, might 
allow simulated events to be compared with events 
that, for one reason or another, were prevented from 
occurring during the simulation. For example, the set 
of simulated failures could be compared against the 
set of failures that would have occurred if diagnostic 
ambiguity had not resulted in false removals during 
the simulation. Using this capability, new simulation-
based Testability metrics could be derived that show 
the effects of diagnostic ambiguity upon the Life 
Cycle Cost or Operational Availability of a system or 
equipment. Rather than act as predictions, these 
figures could be used to assess the impact of both 
design and testing decisions upon the diagnostic 
performance of the system or equipment. Unlike the 
corresponding Maintainability predictions, these new 
metrics could be generated in relatively early phases 
of product development. 

 



 

value encapsulates all knowledge about the future 
diagnostic behavior of the system. 

Finally, for each isolated fault group, the simulation 
knows the particular combinations of failed functions 
that resulted in the isolation of that group. This 
allows the simulation to take anticipated diagnostic 
behavior into consideration when estimating the 
number of replacements needed to correct a failure. 
If, for a serially-replaced fault group, retesting results 
in isolation to a different group (a subset of the 
original group) after a single component has been 
replaced, then a fault has been corrected with one 
replacement—even though additional components 
within the originally isolated fault group will have to 
be replaced before the system is fully repaired. 

Moreover, because the diagnostic simulation knows 
not only the specific failure combination that drives 
each fault isolation, but also the specific 
replacement algorithm (block, serial, hybrid) that will 
be used to repair the isolated fault group, false 
removal rates (or, to be more precise, the estimated 
effect of diagnostic ambiguity upon false removals) 
can be calculated using data from the diagnostic 
simulation. These false removal rates cannot be 
accurately estimated using traditional, deterministic 
methods. The simulation tool, by comparing the 
number of simulated false removals for each 
component with the number of times that the part 
would fail if it were not prematurely replaced, can 
determine the expected number of extra 
replacements that will be required over the useful life 
of the system. Extra replacements refer to 
replacements beyond those that would be 
necessary if there were no diagnostic ambiguity and 
no preemptive prognostics. Taking this one step 
further, a software engine could then easily calculate 
the average cost resulting from extra 
replacements—a measure of the effect of premature 
replacement upon the Life Cycle Cost of the system. 

Example Fault Resolution Calculations 
Using the eXpress Simulation Engine 

In this section, we will present some examples of 
simulation-based Fault Resolution calculations that 
have been generated using the diagnostic module of 
eXpress—a diagnostic engineering tool developed 
by DSI International.  

Within eXpress, a distinction is made between Fault 
Isolation and Fault Resolution. Fault Isolation refers 
to the process of overlaying test information in order 
to reduce the set of suspected components (those 

within which a fault has been detected) to the 
smallest group guaranteed to contain a failure. Fault 
Isolation statistics, then, quantify the ability of the 
diagnostic strategy to unambiguously isolate faults 
for a given system or equipment. This metric—which 
eXpress calculates using traditional, equation-
based techniques—closely corresponds to 
traditional Fault Isolation and Fault Resolution 
calculations when it is assumed that isolated fault 
groups will be maintained using block replacement. 

Fault Resolution (at least as it is handled within the 
eXpress tool), quantifies a diagnostic strategy’s 
ability to resolve failures for a given design. The 
Fault Resolution metric—which eXpress generates 
using a Monte Carlo diagnostic simulation—takes 
into consideration both the particular diagnostic 
strategy and the maintenance philosophy (block, 
serial, hybrid) that has been defined for each 
isolated fault group. Fault Resolution statistics 
measure the ability of the specified diagnostics and 
maintenance plan to unambiguously resolve failures 
for a given system or equipment. 

The following examples will compare Fault Isolation 
and Fault Resolution statistics as they are calculated 
by the eXpress diagnostics module. In order to 
highlight the biases that are corrected when 
diagnostic simulations are used in place of 
traditional techniques, these examples will be set up 
to exploit the particular feature being demonstrated. 
For real-life systems, the effect upon the final 
statistics may or may not be greater than that 
demonstrated in these examples. Differences 
between Fault Isolation and Fault Resolution are 
dependent upon a large number of factors (the 
topology of the design, the distribution of failure 
rates with respect to fan-outs within the design, and 
the relative frequency of failures to different 
functions on the same item—just to name a few). 
For larger systems, of course, the statistical 
differences between Fault Isolation and Fault 
Resolution are not likely to be attributable to any 
single factor or component; instead, they will be the 
cumulative effect of many factors associated with a 
large number of components. 

 



 

Example 1: Block Replacement 

In our first example, we will examine the effect that 
the premature replacement of an item (due to fault 
groups being replaced as a block) has upon other 
failures of that item. The following design (Figure 1) 
will be used for this example: 

Figure 1. Design for Example 1 

In this design, there are four replacement items (A, 
B, C & D) and five functions (one each for A, B & C; 
two for D). It is assumed that the only tests possible 
for this design are those performed at the two 
outputs. The test at OUTPUT-1 verifies the 
operation of item A and the first function of item D. 
The test at OUTPUT-2 verifies the items B & C and 
the second function of item D. For this example, 
each of the four items is considered equally likely to 
have failed—the Failure Rate is set to 1000 failures 
per million hours (about once every forty-one 
days)—and the two functions on item D are 
considered equally likely to fail. 

When diagnostics are performed on this design, all 
failures can be isolated into one of two fault 
groups—one containing items A & D, and the other 
containing items B, C & D. The resulting Fault 
Isolation metrics for this design are summarized in 
the following table: 

Table 1. Fault Isolation Metrics  

Size of Isolated 
Fault Group Probability Cumulative 

Probability 
2 37.50% 37.50% 
3 62.50% 100.00% 

 

According to these figures, 1½ out of every 4 failures 
(37.5%) are isolated to the group of size two and 2½ 
out of every 4 failures (62.5%) are isolated to the 

group of size 3. This is directly proportional to the 
number of items that are isolated within each group 
(if we count each function of D as ½). Since failures 
to each item are shown to be equally probable, this 
might at first appear to be an accurate indication of 
the relative frequency that each fault group would be 
isolated for this design. 

Now, let’s take a look at the Fault Resolution metrics 
(Table 2) that are produced within the eXpress 
diagnostic module, using data generated by a Monte 
Carlo diagnostic simulation. This simulation—which 
was run for 1000 simulated missions of 10,000 
hours each—was set up so that diagnostics are 
performed immediately as each malfunction occurs 
(practically guaranteeing single-point failures) and 
that each isolated fault group will be replaced as a 
block. 

Table 2. Fault Resolution Metrics  

Replacements to 
Repair Isolated 

Fault Group 
Probability Cumulative 

Probability 

2 46.24% 46.24% 
3 53.76% 100.00% 

 

For this design and these failure rates, malfunctions 
would be resolved by two replacements almost 9% 
more often than indicated by traditional Fault 
Isolation/Resolution statistics. To understand why 
this is so, we must first look at the number of failures 
that the simulation registered for each function 
(Table 3): 

Table 3. Simulated Failures and Replacements  

Functions Average 
Failures 

Average 
Replacements 

A 8.42 9.85 
B 5.04 11.45 
C 4.96 11.45 

D1 1.43 
D2 1.45 

21.30 

 

Notice that, although all four items have same failure 
rate, they did not fail equally during the simulation. 
This is not due to randomness or inaccuracies within 
the diagnostic simulation, but rather because items 
are prematurely replaced (due to block replacement) 
each time that a failure is repaired. If there were no 

 



 

premature replacements, then each item would fail 
about 10 times within the simulated mission. With 
premature replacements, however, each item fails 
somewhat less than its failure rate would indicate 
(since each time that it is replaced before it fails, the 
next failure to that component is postponed). Item A, 
because the only time in which it is prematurely 
replaced is when the first function of D fails, fails the 
most. At the other extreme is item D. Because D is 
replaced each time that any of the other items fails 
(remember, D is called out in both fault groups), 
actual failures to one of D’s functions are relatively 
rare—only 2.88 times (the sum of the average 
failures for D1 and D2) within the simulated interval. 
Items B and C, on the other hand, fail about the 
same number of times—which is considerable less 
than for item A, since fewer failures to other items 
result in A’s premature replacement. 

With this in mind, it is easy to understand why 
failures are isolated to the fault group of size two 
nearly 9% more frequently in the simulation than in 
traditional Fault Isolation calculations. Each time that 
a malfunction is isolated a fault group, the block 
replacement of the other item(s) in the group results 
in the postponement of failures for the items in that 
group. Since the fault group of size three results in 
more false removals, failures within that group will 
tend to be deferred more than failures to the group 
of size two. 

Let’s summarize what we have seen so far. Isolation 
to larger fault groups, even though they tend to have 
higher failure rates, results in the postponement of 
more failures than does isolation to fault groups 
containing fewer items. This means that traditional 
Fault Resolution calculations (what eXpress calls 
Fault Isolation), because they do not account for this 
postponement, are biased toward the larger fault 
groups. In addition to this bias is the fact that when a 
part is replaced, failures to other functions of that 
part are postponed. This means that traditional 
calculations are also biased towards items whose 
functions are isolated within multiple fault groups 
(since, when an item is replaced, these calculations 
don’t account for the postponement of failures to 
functions of that item that would be isolated to the 
other groups). Depending upon the size of the 
groups containing the other functions of the replaced 
item, this bias could favor either larger or smaller 
fault groups. Simulation-based Fault Resolution 
metrics do not exhibit either of these biases. 

Let’s complicate this example a little by changing the 
failure rates. Now, instead of each item, let each 
function have the same failure rate (once again, 

1000 failures per million hours). This means that 
item D, which is the only item with two functions, will 
now have twice the failure rate of the other items. 

Although the same fault groups are isolated by the 
diagnostics, the likelihood of isolating to each group 
is now different. Table 4 shows the Fault Isolation 
statistics that would now be produced by eXpress: 

Table 4. Fault Isolation Metrics  

Size of Isolated 
Fault Group Probability Cumulative 

Probability 
2 40.00% 40.00% 
3 60.00% 100.00% 

 

Because each function has an equal failure rate, the 
fault group of size two (which can be isolated due to 
failures to 2 of the 5 functions) has an isolation 
probability of 40%. The fault group of size 3 contains 
3 of the 5 functions and will therefore be isolated 
(according to this calculation) 60% of the time. 

If we generate the Fault Resolution metrics, using 
the same settings as before, we get the following: 

Table 5. Fault Resolution Metrics  

Replacements to 
Repair Isolated 

Fault Group 
Probability Cumulative 

Probability 

2 47.35% 47.35% 
3 52.65% 100.00% 

 

Although the difference between the traditional and 
simulation-based metrics is now under 7.5% (less 
than the nearly 9% difference we saw before), what 
is interesting is that the Fault Resolution metrics 
indicate that two replacements will correct a problem 
over 1% more frequently than in the previous case. 
The reason why this is interesting, however, may not 
be immediately apparent—we must once again look 
at the simulated failures and replacements for each 
function (Table 6). 

 



 

Table 6. Simulated Failures and Replacements 

Functions Average 
Failures 

Average 
Replacements 

A 5.05 13.21 
B 3.16 14.69 
C 3.20 14.69 

D1 8.16 
D2 8.33 

27.91 

 

Notice that, although D has only twice the estimated 
failure rate (2000 instead of 1000 per million hours), 
it now actually fails over five times more frequently 
(16.49 failures vs. 2.88 failures) within the simulated 
interval. Rather than letting failures to other items 
result in its own failures being postponed, item D 
fails first (since it now has twice the failure rate) 
thereby causing failures in the other items to be 
postponed. Rather than rarely fail, failures to D are 
now rarely deferred. Interestingly, however, item D is 
now replaced 27.91 times—only 6.61 times more 
than before. Replacements of item D have simply 
shifted so that, rather than be falsely replaced when 
other items fail, D is now replaced more due to its 
own failures. Nevertheless, failures to other items do 
at times cause D to be prematurely replaced—that’s 
why item D fails only 16.49 times, 3.51 fewer times 
than the 20 failures that would be expected in this 
interval (according to the Failure Rate).  

Figure 2.  A Sample Standard-Normal Distribution in 
the eXpress Object Browser 

Because Monte Carlo diagnostic simulations can 
take into account not only the failure rates, but also 
the specific failure distributions for each component, 
the (simulation-based) Fault Resolution metrics are 
sensitive to differences in these distributions, even 
though traditional Fault Isolation calculations do not 
take failure distributions into account. 

Figure 3. A Sample Exponential Distribution in the 
eXpress Object Browser 

We need only take a quick look at the traditionally-
calculated Fault Isolation statistics (Table 7) to see 
that they contain another bias, for the numbers are 
no different from those that were calculated when 
the standard normal failure distribution was used for 
item B: 

Using the same design, let’s change the assigned 
failure distribution for item B from standard normal 
(the default within eXpress) to exponential. We’ll 
keep the same item Failure Rates (which represent 
the means of the distributions). Figures 2 and 3 
show the example distribution graphs that are 
displayed within the eXpress object browser. 
Although both of these distributions may have the 
same failure rate, items with exponential failure 
distributions (due to their propensity for infant death) 
will tend to generate more failures during the 
simulated time interval than would items whose 
failures fall into normal distributions. 

Table 7. Fault Isolation Metrics  

Size of Isolated 
Fault Group Probability Cumulative 

Probability 
2 40.00% 40.00% 
3 60.00% 100.00% 

 

 



 

eXpress’s Fault Resolution metrics (Table 8), on the 
other hand, tell a different story altogether:  

Table 8. Fault Resolution Metrics  

Replacements to 
Repair Isolated 

Fault Group 
Probability Cumulative 

Probability 

2 38.80% 38.80% 
3 61.20% 100.00% 

 

Although these numbers could be compared with the 
Fault Isolation statistics for this set of distributions 
(Table 7), the fact that these two sets of numbers 
now more closely resemble each other should be a 
cause of some concern—the Fault Isolation statistics 
were not affected in any way by the change in failure 
distribution, whereas the simulation-based statistics 
reflected the projected difference in behavior.  

More interesting is the comparison between the 
Fault Resolution metrics when item B was assigned 
the standard normal distribution (Table 5) and the 
metrics that result when item B’s failures fall into an 
exponential distribution (Table 8). With item B’s 
failures falling into an exponential distribution, the 
likelihood of repairing a malfunction with two 
replacements is nearly 10% less than when B’s 
failures fell into a normal distribution (Table 5). That 
B is responsible for this change in statistics can 
easily be corroborated by looking the failures and 
replacements that occurred for each item in the 
diagnostic simulation (Table 9): 

Table 9. Simulated Failures and Replacements 

Functions Average 
Failures 

Average 
Replacements 

A 5.68 12.73 
B 10.02 20.08 
C 2.91 20.08 

D1 7.05 
D2 7.15 

32.81 

 

As we would expect, there has been significant 
increase in failures to item B relative to the other 
items that are replaced in its fault group (C & D). 
Interestingly, there has also been an increase in 
failures to item A relative to the other items. This is 
because A is the only item that is not prematurely 
replaced each time that a failure occurs for item B.  

It should by now be apparent that the end effects of 
different failure rates & distributions can, for many 
systems, be quite unpredictable—it depends not 
only upon the topology of the design and the fault 
groups that can be isolated, but also on the failure 
rates and distributions assigned to other items in the 
design. 

Example 2: Serial Replacement 

In our second example, we will generate simulation-
based Fault Resolution metrics for a system that is 
maintained using serial replacement (each time a 
fault group is isolated, one item in the fault group—in 
this example, the item most likely to have failed—is 
replaced and system is rediagnosed). The following 
design (Figure 4) will be used for this example: 

Figure 4. Design for Example 2 

In this design, there are three replacement items 
and four functions (item B has two functions). Again, 
it is assumed that tests can only be performed at the 
outputs. Each of the three possible tests, then, 
verifies exactly two functions: A & B1 (OUTPUT-1), 
A & B2 (OUTPUT-2), or A & C (OUTPUT-3). The 
different failure distributions and MTBFs that have 
been assigned to each item are listed in Table 10 
(for this example, the two functions on item B are 
assumed to be equally likely to fail):  

Table 10. Assigned MTBFs for Example 2 

Item Failure 
Distribution 

MTBF  
(in hours) 

A Std Normal 90 
B Std Normal 60 
C Exponential 135 

 

For this design, eXpress isolates four functionally-
unique fault groups (Table 11)—two of which, 

 



 

though they contain different functions, are 
comprised of the same item: 

Table 11. Isolated Fault Groups for Example 2 

Isolated  
Functions 

Isolated  
Items 

A, B2 A, B 
B2 B 
B1 B 
C C 

 

Because multiple-failure diagnostic strategies are 
designed to isolate any combination of simultaneous 
malfunctions, item A cannot be isolated in a fault 
group by itself (as it could if we were to assume 
single-point failures). As we shall see shortly, the 
use of serial replacement can compensate for any 
lost resolution due to the robust—or, if you wish, 
conservative—nature of multiple-failure isolation. 

When calculated in the traditional manner, the Fault 
Isolation metrics for this design (Table 12) show that 
failures can be isolated to a fault group containing a 
single component a little over 60% of the time: 

Table 12. Fault Isolation Metrics  

Size of Isolated 
Fault Group Probability Cumulative 

Probability 
1 60.53% 60.53% 
2 39.47% 100.00% 

 

As in the previous example, we will first compare 
these Fault Isolation metrics with Fault Resolution 
metrics derived using a diagnostic simulation. These 
statistics will be calculated using 1000 simulated 
missions of 10,000 hours each. For our first Fault 
Resolution calculation (Table 13), we will assume 
that the system is maintained using block 
replacement and that there is no diagnostic delay—
in other words, malfunctions will be diagnosed as 
soon as they occur (this simulates the occurrence of 
single-point failures). 

 

Table 13. Fault Resolution Metrics  
(using Block Replacement) 

Replacements to Probability Cumulative 

Repair Isolated 
Fault Group 

Probability 

1 66.12% 66.12% 
2 33.88% 100.00% 

 

In this example, the simulation-based statistics only 
offer about a 6% improvement over the traditional 
method of calculating the metrics. Because the 
diagnostics only isolate to a fault group containing a 
single component only 66% of the time, the Fault 
Resolution metric will reflect this relatively poor 
isolation when block replacement is used. 

Let’s rerun the simulation with one difference—we 
will allow the system to be maintained using serial 
replacement. For each isolated fault group, items will 
be replaced one at a time in a predetermined order. 
In this example, the replacement order will be based 
on the relative likelihood that a failure to each item  
results in the isolation of that fault group (when there 
is no diagnostic delay). After each replacement, the 
design is re-diagnosed to determine whether the 
replacement corrected a malfunction. The resulting 
Fault Resolution Metrics (Table 14) reflect the 
number of replacements needed to repair isolated 
fault groups using this maintenance philosophy. 

Table 14. Fault Resolution Metrics  
(using Serial Replacement) 

Size of Isolated 
Fault Group Probability Cumulative 

Probability 
1 100.00% 100.00% 

 

Upon reflection, it should not be surprising that the 
use of serial replacement allows all simulated 
failures to be corrected by a single replacement. 
Remember, because this simulation used no 
diagnostic delay, only a single item will have failed 
each time that the diagnostic strategy is invoked. 
The only time that the fault group containing two 
components (A & B) is isolated is when item A has 
failed. Furthermore, for this set of failure rates, item 
A is determined to be more likely to have failed 
when that fault group is isolated, so it is replaced 
first when the fault group is serially repaired. 
Because item A is replaced first, this isolated fault 
group will be repaired with a single replacement 
whenever it is assumed that only a single 
malfunction exists at the time that the system is 
diagnosed. (If item B, however, were to have been 
assigned a failure rate large enough that function B2 

 



 

fails more frequently than A, failures to A may have 
required two serial replacements to correct). 

Now, if we increase the time between applications of 
the diagnostics, we will increase the likelihood of 
there being multiple, simultaneous malfunctions as 
the system is diagnosed. The following table (Table 
15) shows the effects that diagnostic delay has upon 
simulation-based Fault Resolution statistics (when 
serial replacement is in effect): 

Table 15. Effects of Diagnostic Delay Upon Fault 
Resolution (using Serial Replacement) 

Length of Delay (in 
hours) 

Likelihood of Repairing a 
Fault with 1 Replacement 

0 100.00% 
1 99.99% 
2 99.97% 
4 99.89% 
8 99.58% 

16  98.39% 
32 95.05% 
64 89.86% 
128 69.18% 
256 57.59% 
512 51.42% 

1024 50.03% 
2048 50.00% 

 

As would be expected, the likelihood of repairing the 
system with a single replacement decreases as the 
interval between diagnostics grows. When 
diagnostics are performed immediately after each 
fault, failures can always be repaired with a single 
replacement. At the other extreme, if diagnoses are 
separated by a long enough time interval, then all 
functions will have had the chance to fail by the time 
that the diagnostics are invoked (this is, of course, 
purely theoretical since the system would in all 
likelihood stop being used once certain functions 
have failed). Nevertheless, if all functions were to 
malfunction as the design is tested, the first isolated 
fault group would contain functions A and B2, 
thereby requiring two replacements to repair. The 
diagnostics would next isolate item C which, once 
replaced, would fully repair the system. When there 
is a large delay between diagnostic sessions, 

failures are observably repaired with two 
replacements (A & B) half of the time and with one 
replacement (item C) the other half. So, when this 
system is maintained using a multiple-fault isolation 
strategy and a fixed serial replacement order, the 
likelihood of visibly repairing a fault with a single 
maintenance action varies from 100% to 50%, 
depending upon the interval between diagnostic 
sessions. A similar trend (Table 16) can be 
observed when the system is maintained using block 
replacement: 

Table 16. Effects of Diagnostic Delay Upon Fault 
Resolution (using Block Replacement) 

Length of Delay (in 
hours) 

Likelihood of Repairing a 
Fault with 1 Replacement 

0 66.12% 
1 65.95% 
2 65.76% 
4 65.43% 
8 64.54% 

16  63.05% 
32 59.93% 
64 57.33% 
128 39.33% 
256 46.06% 
512 49.27% 

1024 49.98% 
2048 50.00% 

 

As is the case when the design is maintained using 
serial replacement, the likelihood of repairing a fault 
by replacing a single item converges on 50% as the 
delay between diagnostic sessions increases. If 
block replacement is used, however, the curve 
approaches the limit (50%) from below, whereas 
with serial replacement, the limit is approached from 
above. This means that, if the design is maintained 
using block replacement, then (within certain ranges 
of diagnostic delays) two replacements will be 
required to visibly correct a fault more frequently 
than one replacement. The general trend is depicted 
in Figure 5: 

Figure 5. Effect of Diagnostic Interval upon Fault 
Resolution (Fixed Replacement Order) 

 



 

In this graph, the decrease in Fault Resolution as 
diagnostic delay increases has been mapped onto a 
logarithmic time axis. The higher curve depicts the 
likelihood of observably repairing a malfunction with 
a single replacement action when the design is 
maintained using serial replacement. The lower 
curve, on the other hand, represents the likelihood of 
repairing a malfunction with a single replacement 
when block replacement is employed. The dotted 
vertical lines depict where the three component 
MTBFs (60, 90 & 135 hours) fall on the time axis. 
Predictably, these lines intersect the curves at points 
where the slope changes. After the final MTBF 
(135), the relatively slow convergence upon 50% is 
due to the fact that failures to that component (C) fall 
into an exponential distribution. 

A B2

C

B1
Figure 7. Functional Block Diagram 

For this design, serial replacement is only employed 
when the diagnostics isolate to the fault group 
containing functions A and B2. If item A is replaced 
first, then the only time that the effect of item A’s 
replacement would not be observable would be 
when functions B1, B2 & C present multiple, 
simultaneous malfunctions as the system is 
diagnosed (this is rare, unless the diagnostic interval 
is relatively long). On the other hand, if item B were 
to be replaced before item A, then there would be no 
observable effect any time that A is malfunctioning 
as the system is diagnosed (since item A is 
upstream from all of the system’s test points). Since 
the likelihood of function A failing is considerably 
higher than the likelihood of functions B1, B2 & C 
simultaneously malfunctioning, the likelihood of 
resolving a failure with a single item replacement is 
substantially worse when item B is replaced before 
item A. Because item B has a higher failure rate 
than item A, however, the diagnostic simulation 
determines that B should be replaced first when that 
fault group is isolated (that is, when the interval 
between diagnostic sessions is not taken into 
consideration). This means that a more optimized 
replacement order can produce a less attractive 
Fault Resolution number. 

The serial replacement algorithm that we have used 
in these simulations has assumed that items are 
replaced in accordance with a fixed replacement 
order based on the relative likelihood of failures 
when there is no diagnostic delay. Now let’s look at 
the curves that result if the serial replacement order 
were to be optimized for each simulation, taking into 
account the effect of diagnostic delay (Figure 6).  

As would be expected the lower curve is no different 
from before (since block replacement is in no way 
affected by this change). The serial replacement 
curve, on the other hand, displays some curious and 
perhaps unexpected discontinuities. Although the 
curve converges upon 50% at the same rate as it did 
when a fixed replacement order was used, it now 
alternates between converging from above (as it did 
before) and below (such as when block replacement 
is utilized). In effect, the Fault Resolution jumps 
between two curves as it converges toward 50%. 

All this, of course, begs the following question: if it 
cannot improve the Fault Resolution of a system, 
why take diagnostic delay into consideration when 
optimizing the serial replacement order? The answer 
to this question is quite simple, if not immediately 
apparent: if the serial replacement order is optimized 
based on knowledge of what failure combinations 
are likely at the time that diagnostics are performed, 
then the expected number of false removals will be 
reduced. Because it takes the diagnostic interval into 
account as it determines the replacement order, the 
diagnostic simulation is able to optimize (minimize) 
false removals—even though, as we shall discuss 
shortly, this optimization may come at the expense 
of Fault Resolution. 

Figure 6. Effect of Diagnostic Interval upon Fault 
Resolution (Variable Replacement Order) 

The reason for this discontinuity lies in the use of 
two different replacement orders for the fault group 
containing functions A & B2. Put succinctly, in a 
multiple-failure scenario, if item A is serially replaced 
before item B, the curve converges from above (a 
fault is more likely to be observably repaired with a 
single replacement); conversely, if B is replaced 
before A, the curve converges from below (a fault is 
less likely to be observably repaired with a single 
replacement). To understand why this is so, we must 
first consider the functional topology of our example 
design. Figure 7 shows the functional block diagram 
that corresponds to the design depicted in Figure 4: 

Figures 8 and 9 depict the changes in the false 
removal rate as the interval between diagnostic 

 



 

sessions increases. Both figures include the curve 
for the change in false removals when the system is 
maintained using block replacement (this is the 
curve that starts at the upper left-hand corner of 
each graph). The second curve in Figure 8 shows 
the change in the false removal rate when the 
design is maintained serially using a fixed 
replacement order. In Figure 9, on the other hand, 
the second curve shows the change in false 
removals (as the diagnostic interval increases) when 
the system is maintained using a serial replacement 
order that has been optimized to take diagnostic 
delay into account. 

As would be expected, the use of serial replacement 
results in fewer false removals than if the system 
were maintained using block replacement. If a fixed 
replacement order is used (prioritized, once again, 
by the relatively likelihood of a failure to each 
function resulting in the given fault group being 
isolated), then the improvement in false removals is 
experienced most when diagnostic sessions are 
separated by shorter time intervals. As the interval 
between diagnostic sessions increases, there is a 
reduction in the profit to be gained from employing a 
serial replacement strategy. Eventually—in this 
example, when the delay between diagnostics 
approaches 80 hours—the effect of serial 
replacement upon the false removal rate is no 
different from when block replacement is employed. 

Figure 8. Effect of Diagnostic Interval upon False 
Removals (Fixed Replacement Order) 

Figure 9. Effect of Diagnostic Interval upon False 
Removals (Variable Replacement Order) 

If the system is maintained serially using a variable 
(optimized for each diagnostic interval) replacement 
order, then the false removal rate not only remains 
less than the rate that would be achieved using 
block replacement; it also approaches zero more 
quickly. In other words, using this maintenance 
philosophy, zero false removals can be attained with 
smaller intervals between diagnostic sessions than 
would be needed using block replacement. The 
curve starts out the same as for fixed (un-optimized) 
serial replacement. When the diagnostic delay is 
slightly longer than 70 hours, however, the false 
removal rate suddenly dives from about 6.5% to 
about 1% and quickly drops to zero. This drop 
corresponds, incidentally, to a large drop in Fault 
Resolution over the same range (Figure 6)—a drop 
that did not occur when the system is serially 
maintained using a fixed replacement order (Figures 
5 & 8). Interestingly, the sharp discontinuities that 

appear in Figure 6 as the Fault Resolution 
converges upon 50% all occur after the false 
removal rate has already settled on 0.0%. In short, 
the same optimization that allows the false removals 
to drop sharply for diagnostic intervals between 60 
and 90 hours also produces relatively poor Fault 
Resolution statistics for some diagnostic intervals in 
excess of 188 hours.  

This disjunction between the False Removal Rate 
and Fault Resolution metrics is due neither to the 
accuracy of the simulation nor the specific serial 
replacement order that is employed (although this 
disjunction is glaringly apparent for time-optimized 
replacement orders). Instead, the reason why 
improvements in the False Removal Rate can result 
in less attractive Fault Resolution numbers lies in the 
definition of the two metrics. The Fault Resolution 
metric quantifies the replacements needed to visibly 
repair a malfunction; the False Removal Rate, on 
the other hand, quantifies the replacements that 
actually repair a malfunction, regardless of whether 
the existence of multiple failures masks the 
technician’s ability to observe the corrected 
functionality. What this also means is that, even 
when calculated using a diagnostic simulation, Fault 
Resolution numbers do not consistently reflect the 
ability of a diagnostic (and replacement) strategy to 
reduce the number of unnecessary maintenance 
actions. 

What is needed is not a better Fault Resolution 
metric—Fault Resolution remains the best measure 
of diagnostic performance that can be verified 
directly using field data. Rather, what is needed is a 
new metric that quantifies the likelihood of correcting 
a component malfunction with a single replacement 
(as opposed to the likelihood of observably 
correcting a failure with a single replacement). This 
new metric would then vary predictably in 
accordance with the False Removal Rate.  

Example 3: False Removals 

As we have already seen, a diagnostic simulation—
particularly when equipped with a multiple-failure 
fault isolation strategy and a maintenance engine 

 



 

that can perform block and/or serial maintenance—
is able to simulate the detection, isolation and 
replacement of any combination of malfunctioning 
items. Moreover, since a simulation knows the 
precise combinations of functional failures that result 
in each fault isolation, it can estimate the effect of 
diagnostic ambiguity upon the false removal rate. It 
is important to recognize, however, that diagnostic 
simulations cannot predict actual false removal 
rates—these rates can only be calculated from 
support data and may be influenced by many factors 
in addition to diagnostic ambiguity. Nevertheless, 
since ambiguity is a prime cause of false removals, it 
is useful to be able to estimate the false removals 
that can be attributed to sub-optimal diagnostics. As 
we shall see, these statistics may be used not only 
as baseline numbers for the prediction of actual 
false removal rates, but also (all other things being 
equal) as a measure of how maintenance 
requirements might change over the intended 
lifetime of a system or equipment. 

Throughout this example, the following design 
(Figure 10) shall be used: 

 
Figure 10. Design for Example 3 

The MTBFs and Replacement Costs for the seven 
components in the design are listed in Table 17 (for 
this example, it shall be assumed that all failures for 
each item fall into a standard normal distribution). 
Furthermore, each of the items has only one 
function. Diagnostics are assumed to be performed 
at six hour intervals.  

Table 17. Assigned MTBFs and Replacement Costs 

Item MTBF Replacement Cost 
(in U.S. dollars) 

A 1.5 years 20.00 

B 250 days 2.00 
C 1 year 90.00 
D 2 years 350.00 
E 4.5 years 200.00 
F 3.75 years 10.00 
G 3.75 years 25.00 

 

Each of the false removal statistics for this example 
will be based on 1000 simulations over the specified 
mission length. Let’s first look at false removals 
when the system is maintained for one year using 
block replacement. Over the first year, nearly 62% of 
all replaced items are falsely removed—that is, 
replaced prior to their having failed. Worse yet, for 
two of the components (A & C), over 90% of all 
replacements during the first year are premature.  

The diagnostic simulation allows us to compare the 
premature replacements for each component with 
the replacements that would have resulted if the 
item were only replaced when it had failed. From this 
comparison, we can compute the average 
percentage of each component’s lifetime that 
remains when it is prematurely replaced, as well as 
the average number of extra replacements 
(replacements beyond those that would have 
occurred if each component were only to be 
removed when it had failed). The resulting numbers 
have been compiled into Table 18: 

Table 18. False Removal Statistics for the First Year 
of a System Maintained using Block Replacement 

Item 
False 

Removal 
Rate 

Premature 
Extra 

Replace-
ments 

Cost due 
to Extra 
Replace-

ments 
A 94.80 50.01 0.93 18.60 
B 1.70 0.39 < 0.01 0.02 
C 90.18 34.43 0.64 57.60 
D 0.00 N/A N/A N/A 
E 0.00 N/A N/A N/A 
F 0.00 N/A N/A N/A 
G 0.00 N/A N/A N/A 

The False Removal Rate column contains the 
percentage of all replacements of the given item that 
occurred prior to that item actually having failed. 

The Premature column lists the average percentage 
of the lifetime of the given item that remained when 

 



 

that item was replaced. Item A, for example, is being 
replaced while half of its useful life remains. 

Table 20. False Removal Statistics for the First Year 
of a System Maintained using Serial Replacement 

Item 
False 

Removal 
Rate 

Premature 
Extra 

Replace-
ments 

Cost due 
to Extra 
Replace-

ments 
A 0.00 N/A N/A N/A 
B 3.92 1.72 0.05 0.10 
C 0.00 N/A N/A N/A 
D 0.00 N/A N/A N/A 
E 0.00 N/A N/A N/A 
F 0.00 N/A N/A N/A 
G 0.00 N/A N/A N/A 

Extra Replacements refers to the average number 
of replacements beyond those that would be 
expected if the item were to only be replaced when it 
fails.  

Cost due to Extra Replacements refers to the 
cumulative item Replacement Cost associated with 
all extra replacements. This number represents the 
contribution of diagnostic ambiguity toward the 
expected cost to maintain the system. As can be 
easily seen, the cost due to extra replacements is 
negligible during the first year of deployment.  

 Let’s compare these numbers with the False 
Removal statistics that would result if the mission 
length for our system were to increase to 30 years 
(Table 19): 

Table 19. False Removal Statistics for Thirty Years 
of a System Maintained using Block Replacement 

Item 
False 

Removal 
Rate 

Premature 
Extra 

Replace-
ments 

Cost due 
to Extra 
Replace-

ments 
A 97.73 51.31 23.64 472.80 
B 2.27 0.40 0.20 0.40 
C 87.64 37.11 19.88 1789.20 
D 0.00 N/A N/A N/A 
E 0.02 4.27 < 0.01 < 2.00 
F 0.00 N/A N/A N/A 
G 56.71 28.55 3.34 83.50 

Although nearly four percent of all replacements of 
item B constitute false removals, this premature 
replacement will only occur in 5 out of every 100 
replacement actions (the average cost being 10 
cents per design). Table 21 depicts the statistics that 
would result from a thirty year simulation utilizing 
serial replacement. 

Table 21. False Removal Statistics for Thirty Years 
of a System Maintained using Serial Replacement 

Item 
False 

Removal 
Rate 

Premature 
Extra 

Replace-
ments 

Cost due 
to Extra 
Replace-

ments 
A 0.05 0.02 < 0.01 0.20 
B 36.34 18.06 10.18 20.36 
C 0.00 N/A N/A N/A 
D 0.00 N/A N/A N/A 
E 0.01 0.01 < 0.01 0.20 
F 0.00 N/A N/A N/A 
G 0.00 N/A N/A N/A 

  

A quick comparison of Tables 18 & 19 shows that, in 
addition to extending the period over which items A, 
B & C can be falsely removed, the longer mission 
length presents items E & G with the opportunity to 
be falsely removed as well. For item E, however, 
false removals result in extra replacements in fewer 
than one mission out of every hundred.  

If one were to base long-term maintenance 
decisions on short-term data, then one might 
assume that the false removal rate for item B in the 
first simulation remains constant over time. On the 
contrary, item B’s false removal rate increases over 
time—from 3.92% to 36.34% over the course of 
thirty years.  Now we’ll look at the results if this system were 

maintained using serial replacement. 

Conclusions The following table (Table 20) lists the false 
removals that would be expected if this system were 
to be maintained using serial replacement (with a 
variable replacement order): 

Simulation-based Fault Resolution and False 
Removal metrics provide greater accuracy than do 
traditional approaches to calculating the metrics. 
Metrics calculated using a Monte Carlo simulation 

 



 

are free of many of the biases that inhere in 
traditionally-calculated metrics. Furthermore, 
because these diagnostic simulations can take into 
consideration a large number of different criteria, 
they can be used to produce more complex sets of 
data than can be done using traditional methods of 
assessing diagnosability. Ultimately, because 
diagnostic simulations are even able to trace events 
that have never occurred, complex and useful new 
metrics (such as the effect of diagnostic ambiguity 
upon Life Cycle Cost) can be easily derived from 
simulation data.  

[2] “Procedure V.” Maintainability Prediction, MIL-
HDBK-472, 1966 (Revised 1984), pp. V-6–V-7. 
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