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COMPARISON OF TESTABILITY ANALYSIS TOOLS FOR USAF 

 
by 

Dr. Sundaram Natarajan 
and 

Bradley K. Herman 

ABSTRACT 
 

As electronic systems become more complex, testability is becoming an increasingly 
important design consideration. To incorporate testability properly during the design phase, 
an appropriate testability analysis tool must be selected. In this report, we address the 
necessity for including testability in the design phase and develop a set of criteria to 
compare testability analysis tools. We analyze several tools with respect to the established 
criteria. Finally, we conclude with the summary and the recommendations regarding the 
selection of a suitable testability analysis tool for design for testability (DFT). 
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I .  INTRODUCTION 
 

Recent USAF programs have sought to address the enhancement of both built-in 
and off-line testing of new systems early in the acquisition phase. This requires the 
inclusion of testability concepts in the design phase. It has the goal of eliminating interim 
contractor support (ICS) and thus reducing the life-cycle cost (LCC) of the system. In 
addition to reducing the LCC of the system, the incorporation of testability in the design 
phase also increases the reliability, maintainability, and availability (RM&A) of the system. 
The potential monetary savings and the increased quality of the system make the 
inclusion of testability in the design phase very attractive. Testability must be included at 
the lowest level of design to be effective. For electronic systems, this means that the 
testability criteria should be applied at the circuit card assembly (CCA) level. This is 
becoming increasingly more important with the increased CCA complexity of modern 
electronic systems. The task of including testability in the design phase of the CCAs lends 
itself to computer-aided design (CAD) tools. To ensure an accurate verification of 
testability requirements, a proper CAD tool must be chosen that is suitable for the job at 
hand. The previous studies of testability analysis tools have dealt mainly with system level 
analysis, but not with the board level analysis required by modern electronic systems. The 
other board level studies were performed before most of today's CAD tools were even in 
existence. Also the growing number and added maturity of CAD tools requires a new 
study to be performed. 

In this report we first establish the objectives of our research and provide support 
for the research in the form of an overview of the design for testability philosophy. We then 
state and support the criteria and method by which we evaluate each testability tool. A 
section is devoted to each tool that briefly describes how each software meets the 
established criteria. These descriptions should not be considered complete overviews of 
the tools. For details beyond the scope of this report, any interested individuals should 
contact the individual vendors. We conclude with a summary of the research and our 
recommendations. 
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II. OBJECTIVES OF THE RESEARCH EFFORT 
 

The objective of our research was to analyze and compare several testability 
analysis tools as to how they perform a board level testability analysis of electronic 
systems. This involved evaluating several aspects of each tool from ease of input to clarity 
and accuracy of the outputs. Another main goal of this research was to determine one or 
more Figures of Merit (FOM) that can be used to set testability requirements. Since there 
is no standard method for obtaining an FOM, the resulting FOM from each tool is unique. 
The proper FOM mould be one which describes the testability of a CCA in the fewest 
possible parameters with the most insight into its testability. To get an accurate evaluation, 
the CAD tools were tested with a variety of circuits, namely digital, analog, and hybrid 
circuits. For our study to be realistic, it was carried out using actual CCAs selected from 
the E-3 AWACS aircraft. 
 

III. DESIGN FOR TESTABILITY 
 

Testability addresses the issues involved in achieving the inherent ability in a 
system to be testable so that desired levels of fault detection and isolation can be 
achieved in an accurate, timely, and cost-effective manner. The testing of an item can be 
influenced by the physical design of the item, the electrical design of the item, and 
procedures and equipment used to test the item. With the introduction of sophisticated test 
equipment, lacking physical designs can be overcome with guided probe and bed-of-nails 
techniques. However, this becomes ineffective in test cost and time required to test. Even 
with the sophistication of the test equipment, the system must still be designed in such a 
manner that it is testable. This is known as being inherently testable. As systems become 
more costly and more complex with higher part density on each CCA, the ability to test 
and maintain these systems becomes increasingly difficult. Only if a system is highly 
testable can confidence be placed in the fact that it is fault free. Once a system is known 
to contain a fault, the ability to isolate the fault is directly related to the inherent testability 
of the system. The testability of the system is one of the leading factors influencing the 
LCC of the system. This is because the maintenance of a system is influenced by its 
testability and it can account for 50% of its LCC. 

The most common method of system design places the test engineer at the end of 
the design phase. Typically, at this point, the hardware has been designed and is at some 
point of production and the test engineer must find a way to improve the testability of the 
system through probe tests and other intrusive methods. This method is time consuming 
and quite often the test requirements cannot be met due to a lack of inherent testability of 
the design. The decision must then be made whether to redesign the hardware or relax 
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the test requirements. Since the hardware is being produced in some fashion at this point, 
the redesign of the hardware would be very costly and time consuming. On the other 
hand, the relaxation of the test requirements would reduce the testability of the system 
and thus increase its maintenance cost and hence its LCC. The most logical solution to 
this is to include testability in the initial design phase so that test requirements can be met 
before the system enters the production phase. The test requirements can then be treated 
as additional design requirements for the system. This is called design for testability 
(DFT). Addressing testability issues in the design phase enhances the testability of a 
system thus reducing its LCC. 

As the complexity of the system increases, the ability of a designer to incorporate 
testability by the old time-consuming manual methods becomes impossible. Thus MIL-
STD-2165 becomes more of a guideline than a method of analyzing testability. At the early 
stages of the design phase, the designs can change on a daily basis. Therefore, some 
method of incorporating these changes rapidly into the testability analysis becomes a 
necessity. This problem lends itself quite well to computer-aided design (CAD) systems. 
Therefore CAD tools have become necessary for proper testability analysis. There are 
several such tools available. Some of the popular ones are: CAFIT, I-CAT, STAMP, 
ASTEP, and STAT. Our main concern was to compare these tools for the USAF. ASTEP 
was considered in the original proposal, but was removed from this study by request 
because it is primarily a system level testability analysis tool and it is not usable for 
testability analysis at the CCA level. 
 

IV. CRITERIA FOR TESTABILITY ANALYSIS TOOLS 
 

The first criteria to evaluate was the input requirements of each testability tool as to 
how much effort is required to prepare the design information in a form suitable for the 
software. This involved evaluating the modeling method used for each program. Other 
aspects such as the flexibility of the modeling procedure and the time required to do the 
modeling should also be included in the criteria. The next criteria evaluated was the ease 
with which the modeling information can be entered into the program. This included the 
user interface as well as the form in which the information is presented back to the user. 
The data should be presented in such a way as to allow the user to debug the information 
quickly. The error checking ability and the clarity of the error messages presented to the 
user are two criteria that must be addressed for tasks of the size being considered (i.e. 
large CCAs such as the ones we used). The run-time of the programs is also very 
important since one would not wish to wait overnight for the analysis of a single CCA. 

The primary criteria for the evaluation of the testability analysis tools is the 
information in the form of a FOM from the output of each tool. The output should be 
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concise for the quick assessment of the inherent testability of the CCA. It should also be 
detailed enough to provide insight into the details of the testability in a specific portion of 
the CCA. This information should include such aspects as the various ambiguity groups, 
feedback loops, types of testing strategy to apply, etc. In addition to the quantitative 
outputs, some qualitative outputs such as suggestions to improve the testability are also 
desirable. These include where to break feedback loops, where to add test points, test 
points to eliminate, and any other suggestions. 

In addition to these criteria, some other aspects of the individual programs were 
also evaluated. These were primarily features regarding the testability analysis unique to a 
particular program. 

Finally, to summarize the evaluation criteria, they are in the following order of 
importance: 

(1) 
(2) 
(3) 

(4) 
(5) 
(6) 
(7) 
(8) 

A concise FOM yielding a measure of testability 
Suggestions to improve testability through the breaking feedback loops 
Suggestions to improve testability through the addition or elimination of test 
nodes 
Information on ambiguity groups and feedback loops 
Testing strategy or procedure 
Data input requirements 
Amount of modeling required 
User interface. 

 
V. METHOD OF EVALUATION 

 
Our primary concern in the evaluation of the testability tools was how the tools meet 

the criteria established in the previous section. The three circuits chosen were selected to 
give a feel for how the tools met the criteria on a variety of real-world electronic circuits. 
Another criterion that was used in selecting the circuits was the experience of the WRALC 
personnel in developing the depot for these circuits. The actual numerical results are of 
little consequence since each circuit, that any user will analyze, will have its own unique 
characteristics. How the tools met the challenge of evaluating different types of circuits was 
of a greater importance. Since every circuit will yield unique results, the numerical results 
themselves cannot be used to evaluate the tools. Each tool was scored on a scale of 0 to 
10 as to how effectively each of the criteria was met. Each criteria was assigned a 
weighting factor based on its importance to design for testability (DFT). 

The first criteria is the most important since it characterizes and summarizes the 
testability of the CCA and it received a weight of 10. The second and third criteria were 
both given weights of 9 since they are the primary means of improving testability through 
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design changes. The fourth criteria was assigned a weight of 8. This is because the 
detailed information can be used to improve testability even though no direct suggestions 
are made. The fifth criteria is more limited in the information that it can provide with regard 
to the design procedure so it received a weight of 6. The last three criteria do not deal 
directly with the testability analysis and the design of a CCA. However, they are still 
important because even an effective design tool may not be practical in its use. Thus, each 
of the last three criteria was given a weight of 5. 

Once all the scores were assigned, each tool had its weighted total score 
calculated from the assigned scores and weights. Any evaluation is bound to be 
subjective, but we believe that our independence from any government agency or private 
corporation limits the subjectiveness as much as possible. 
 

VI. CAFIT 
 

CAFIT stands for Computer-Aided Fault Isolation and Testability Model. CAFIT 
was developed by ATAC of Mountain View, CA. It is a government owned testability 
analysis tool. CAFIT was designed to enhance the testability of electronic circuits, both 
digital and analog. It provides outputs, after performing several forms of analysis, that aid 
in designing circuits to be inherently testable. For this study, CAFIT was run on an IBM-PC 
AT compatible. It requires an EGA compatible monitor and occupies approximately 2 
Mbytes of hard disk space. An additional 1.4 Mbytes of disk space is taken up by the 
library, but this will vary depending on the number of device models used. It can also be 
run on Mentor-Graphics workstations. 

CAFIT provides a library utility that builds and maintains a model library of parts. 
This library contains all of the logic, attribute, failure rate, and pin information for each 
device in the library. The user can modify and add devices easily to the library with the 
help of the reference manual. Digital devices can be entered easily from the data sheet of 
most devices with slight modifications into the format required by CAFIT. For the digital 
devices, the model contains the actual function of the device in terms of HIGH, LOW, TRI-
STATE, etc. For analog devices, no functional information is used. Thus the analog model 
is purely topological. This mixture also allows for the modeling of hybrid components such 
as D/A and A/D converters. Care must be taken when using analog devices to ensure that 
the proper dependency model is used. 

CAFIT is designed to accept schematic information from a netlist provided by a 
CAE package such as the CT-2000 software package from Case Technologies, Inc. If 
such a package is not available, the connectivity information from the schematic can be 
entered into CAFIT through an ASCII file in the proper format. We used this method since 
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the CAE tool was not available for our use. CAFIT takes this information along with the 
dependency model information previously entered to do the testability analysis. If the CAE 
system is available, results are shown in color format on the schematic. Otherwise the 
output files provide the means to view the results. Input for the ASCII file is easily obtained 
directly from the schematic and this does not require any special knowledge of the inner 
workings of the circuit if the circuit is purely digital. However, if analog components are 
used, then the knowledge of the operation of the circuit is essential to get the proper 
topological models. The only constraint on the labeling of nodes is in the labeling of test 
nodes, input signals, and output signals. Test node labels must have a TS prefix while 
signal input and output signals must have a SG prefix. Overall, CAFIT requires very little 
preparation of the input information if the models have already been created within CAFIT. 
This will most often be the case once a library of devices has been established. 

Performing a basic testability analysis with CAFIT for an existing design is relatively 
easy. A basic analysis attempts to locate structures inherent in the design that will inhibit 
the testing of the design. These structures include negative reconvergence, logic 
redundancy and, most importantly, the information on feedback loops present in the 
design. Negative reconvergence is a design condition in digital systems where a portion of 
logic prevents an input from controlling an output. This condition is not necessarily a 
design flaw, but it can seriously impede the testing of the circuit. Logic redundancies, 
which inhibit the testing of the circuit, are also identified. With logic redundancy, the 
observability of the circuit is reduced. The feedback loop portion of the report is probably 
the most useful. This provides a detailed output listing of all the components involved in 
each loop as well as nodes at which to break each loop. The next type of analysis 
provided by CAFIT allows the user to select parameters about the test nodes and perform 
a detailed testability analysis with regard to signal controllability and observability. 

If the test nodes have already been selected, an analysis can be done to determine 
signal coverage with only these nodes. The signal coverage of a device is a measure of 
whether or not stuck-at faults in device can be tested for. This is a function of 
controllability, observability, and the number of tests permitted. Controllability and 
observability figures using the signal input and output and test sites are given along with 
the signal coverage for each device. In addition to the selected test nodes, an additional 
set of nodes can be chosen by the user. CAFIT then selects the nodes that will yield the 
highest signal coverage. If 100% coverage can be achieved with fewer test nodes, then 
the lowest number of nodes are chosen. The test node selection is probably one of the 
most powerful aspects of the analysis that CAFIT provides. This allows the user to 
experiment with various configurations to determine the optimal number of test nodes for a 
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given CCA. The number of test signals is an additional parameter that can also be varied. 
This constraint is becoming less prevalent as sophisticated test equipment becomes 
commonplace. This is also more applicable to digital circuits where CAFIT has the 
knowledge of the various states of the circuit from the model description. Analog circuits 
may require only one or possibly several tests to be performed on a single node, 
depending on the circuit. 

The outputs from CAFIT can be used for the selection of test nodes, the selection of 
points to break feedback loops, and the estimation of controllability and observability. 
However, most testability requirements are in terms of fault isolation parameters and 
ambiguity group sizes. Even though a node is controllable and observable, it may not have 
a unique test that identifies only that node, leading to the creation of ambiguity groups. 
This is especially true when dealing with feedback loops. The entire loop is an ambiguity 
group even though each device may by controllable and observable. This is especially 
important in the testing of analog and hybrid circuits where feedback networks are 
invariably used. The information provided through controllability and observability is not 
enough to describe the testability of an analog or a hybrid circuit thoroughly. 

The user interface for CAFIT is one of the easiest to use and understand. It is 
designed in such a way that even an inexperienced user can use the program. On screen 
help may be called up throughout the program. CAFIT provides information on the screen 
without cluttering it up. The error messages provided were descriptive and aided in the 
debugging of the various circuits tested. The only shortfall in the user interface is having to 
prepare an ASCII file if the CAE system is not available. It is acknowledged that CAFIT 
was designed to be used with an accompanying CAE system, but a provision for entering 
the schematic information directly into CAFIT and having CAFIT manage the files would 
have been helpful. CAFIT also writes the output data to one file only without the option to 
change the name of the file. Thus, after each run, it overwrites the existing file making it 
necessary to continually rename the output file after each run. This is not a serious 
drawback, but it can be frustrating after waiting 45 minutes for results and then realizing 
previous results were accidentally overwritten. 

CAFIT is primarily geared toward the analysis of digital circuits. It can analyze 
analog and hybrid circuits also. However, the terminology used by the program and the 
user's manual suggest that the analog portion has been added as an afterthought. The 
lack of fault isolation and ambiguity group parameters limits the usefulness of the output to 
verify whether the desired levels of testability are being met. However, the test node 
selection and feedback loop breakpoint analysis make CAFIT a tool for choosing test 
nodes and making changes in the circuit to increase its inherent testability. 
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CRITERIA and SCORES for CAFIT: 
 
(1) 5: The controllability and observability figures alone are not enough to fully 

characterize the testability of a circuit. 
(2) 8: The suggestions for selecting feedback loop breakpoints are essential. 
(3) 8: The time spent selecting appropriate test nodes is greatly reduced with CAFIT 

suggesting the most effective test nodes. 
(4) 3: The information on feedback loops is helpful, but there is a total lack of 

information on ambiguity groups. 
(5) 0: No outputs concerning testing procedure. 
(6) 5: The existence of the interface with the CAE tool can make data input simple. 

However, the alternative of having to format an ASCII file with all of the circuit 
information is tedious. 

(7) 6: Minimal modeling is required once a library of devices is established. 
However, modeling of analog circuits must still be done on an individual basis. 

(8) 8: The user interface is simple and easy to use and has plenty of on-line help. 
 

VII. STAT 
 

STAT is a product of Detex Systems, Inc. of Orange, CA. STAT, along with its 
predecessor LOGMOD, is a testability analysis tool designed to enhance the testability of 
systems. This applies to the enhancement of the testability of new systems through their 
design and for the maintenance of existing systems. Our study will focus on the design 
aspects of its capability. STAT runs on a variety of PC platforms, but a minimum of a 286-
based PC is recommended with a sufficiently large hard drive to store the STAT program 
and all of the user's databases. It requires approximately 2.5 Mbytes of disk space for the 
program itself. The basis for the analysis that STAT performs is the dependency model 
information supplied by the user. 

A dependency model is one that simply shows the relationships (dependencies) 
between the various nodes and items in a system. This can be interpreted as describing 
the information flow within a general system and as a signal flow for an electronic system. 
The topological information from a circuit is entered into STAT completely in the form of 
dependency models, not as the connections between the actual electronic components. 
This type of modeling has advantages as well as disadvantages. The main advantage for 
electronic circuits is that it bridges the gap between the descriptions of digital and analog 
circuits. Another advantage of the dependency modeling for electronic circuits is that it 
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provides considerable flexibility to describe a particular circuit. This includes what aspects 
of a particular signal are important as well as the level of modeling for each portion of the 
circuit. For example, it allows the user to choose whether or not to consider packages 
containing more than one device to be considered as individuals or as a single item. Being 
able to describe the particular aspects of one signal as individual signals is particularly in 
analog circuits where biasing and actual signal information must be considered separately. 
The disadvantage of this type of modeling is that it requires an intimate knowledge about 
the operation of a particular circuit in order for it to be accurately modeled. Modeling a 
complex analog or hybrid circuit can be a time consuming and frustrating task even when 
the circuit is familiar to the user. However, the proper modeling up front will help to reduce 
future problems and the time required to perform a proper testability analysis using STAT. 

The entering of the dependency model information into STAT is very straight-
forward. The information is entered in an interactive fashion with STAT updating and 
maintaining the databases transparently. Each node in the dependency model is entered 
as a test node. One aspect of STAT, that is particularly frustrating, is that all node labels 
must have a 'T' prefix and all item labels must have an 'I' prefix. This requires the user to 
maintain some type of translation table independently. Being able to use descriptive labels 
would aid in interpreting the results of the testability analysis. Descriptions can be added to 
the dependency information as it is entered. The dependency model information is 
displayed back to the user in a manner that allows errors to be seen visibly and corrected. 
Once the basic dependency information has been entered, the model can then be 
processed to find and correct any additional errors. The error messages supplied are 
descriptive and they can be corrected easily. 

The evaluation of a model with STAT is not a one step process, but rather a series 
of processes. When a model is first processed, all nodes are considered as test nodes. 
This becomes the base model for all subsequent evaluations. This is the point at which 
STAT allows the user to perform a variety of "What if?" type scenarios. This is done by first 
creating a new model that is identical to the base model with a simple keystroke. The user 
can then modify the characteristics of each node within the model. Most nodes will be 
chosen as non-test nodes. However, the aspects of the chosen test nodes can also be 
further modified. The type of access required to reach a node, such as external or probe 
accessible, can be specified. The cost and time to test each point can also be specified. 
The failure rate and replacement time and cost of individual items can also be modified. 
Other factors can also be modified and weighted. The weighting allows the user to perform 
an analysis based on individual specifications. 

One aspect of the operation of STAT deserves special mention. Along with 
identifying feedback loops within the model, STAT has an interactive feature called the 

 9



Feedback Loop Breaker. This feature identifies feedback loops, then recommends the 
nodes at which to break the feedback loops and the new characteristics resulting from the 
breakage. The resulting ambiguity groups can be viewed immediately. This allows the user 
to continue to modify the loops until the required ambiguity group requirements are met. 
This is just one aspect of a very workable user interface. Once all the terminology 
associated with STAT's modeling is understood, it is easy to maneuver through many 
screens and perform a testability analysis. 

The outputs from STAT take on a variety of forms that range from the concise and 
informative to the long and drawn out. The longer outputs are more applicable to the 
maintenance aspects of testability and not to the design process. Each output report 
contains a summary section and a detailed section. This is very helpful when trying to 
locate a particular piece of information without turning through perhaps hundreds of pages. 
The management model report contains a graphical representation of the topological 
dependencies for a particular model. This allows the user to more clearly see the loops that 
are not easily identifiable in the original circuit diagram. The feedback loop indicator report 
contains a detailed information on all feedback loops in a model. This includes information 
on the relative complexity of the feedback loops and information on the sizes of the 
ambiguity groups resulting from the breaking of the loops. The topological indicator report 
contains the most information to determine the inherent testability of a circuit. The fault 
isolation level is given for each ambiguity group size present in the circuit. This FOM is a 
primary means of verifying whether testability requirements are being met. All the 
characteristics of each ambiguity group, test, and item are given in the detail section. This 
information is in an easy to read form, but for large circuits, the detailed section can 
become quite large. The last report produced is the fault isolation indicator report. The 
processing of this report provides a means for determining the number and types of tests to 
use. The user has options regarding the acceptable size, time to replace, and cost to 
replace for ambiguity groups. The user can also select the number and type of tests to 
consider. The report then lists the suggested tests to use and tests that are not used. This 
report also includes a detailed flow diagram for the isolation of faults. This diagram includes 
the cost and time spent testing to reach a particular point in the isolation procedure. The 
first three reports, namely the management model, feedback loop indicator, and topological 
reports, are better suited to evaluate the testability of a particular design. 

Using the dependency modeling, STAT can analyze any circuit regardless of 
whether it is analog, digital, or hybrid. The only difference is in the amount of modeling 
required for a particular CCA. The multitude of output information allows the evaluation of 
just about any aspect of the testability. The most important and useful of which are the 
detailed fault isolation and ambiguity group parameters. 
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CRITERIA and SCORES for STAT: 
 
(1) 9: The presentation of the fault isolation levels in a simple table is the ideal result 

to express the testability of a circuit. 
(2) 10: The feedback loop breaker provides information directly on the results of 

breaking loops. The interactive nature of this feature makes dealing with 
feedback loops extremely easy. 

(3) 9: Provides informative, detailed suggestions regarding the placement of test 
nodes. 

(4) 9: STAT provides very detailed information on all aspects of ambiguity groups and 
feedback loops. 

(5) 9: Very detailed descriptions of test strategy and suggestions as to what type of 
test to use. 

(6) 

(7) 

(8) 

6: The interactive data editor makes data entry easy, but having to have the 
proper prefixes for all nodes and items is irritating. 

4: The development of the dependency model for complex circuits can become 
very tedious and time consuming. 

8: The descriptive names of all the choices presented and the on-line help make 
STAT an easy program to operate. 

 
VIII. STAMP 

 
STAMP, which stands for System Testability and Maintenance Program, is a tool 

designed for the analysis of system testability and fault-isolation strategies. STAMP is a 
program from ARINC Research Corporation of Annapolis, MD. It runs on an HP-1000 mini-
computer and recently a PC-based version has been announced. STAMP is for the use of 
ARINC employees only and primarily for government contracts. It is unfortunate that, at this 
time, it is not available to the end user directly. For a tool to be effective in the design 
phase, it must be readily available to the design personnel. Then, when design changes in 
the circuit occur, their effect on the circuit's inherent testability can be quickly determined 
and suggestions made back to the design personnel on how to improve the circuit's 
testability. We developed the models for the three circuits and sent them to ARINC to be 
processed. The quick turn-around for receiving the results would be sufficient when doing 
an analysis of a previously designed circuit for testing purposes only. However, for a design 
work, the results must be available as quickly as possible. STAMP performs its analysis 
based on the first-order dependency model. 
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The discussion on the dependency model in the previous section applies to STAMP 
as well except for the differences in terminology for tests and items. STAMP refers to these 
as events and elements, respectively. The use of the dependency model is essential for 
modeling hybrid and analog circuits properly. Again the main disadvantage of dependency 
modeling is the large amount of time required to model analog and hybrid circuits. The user 
has several options for inputting the dependency information. The dependency information 
can be entered directly into STAMP through an interactive interface, through an ASCII file, 
or through the wire-list output of the popular schematic drawing program Schema. We 
produced our dependency lists which were then entered directly into STAMP manually. 
STAMP has default labels for all the aspects of the dependency model. However, these 
labels may be modified so that the labels on the output information can be related directly 
back to the original schematic. In addition to the first-order dependency information, a wide 
range of modifiable parameters are also available. These include failure rates, different 
types of test, test time and cost, test grouping, component grouping, etc. The ease with 
which the data can be entered is not a criteria that we can judge fairly since we did not 
actually run STAMP. Likewise, the options available when obtaining output cannot be fairly 
judged. However, the extensive outputs can be analyzed and they do contain the 
information on testability parameters. 

The outputs are separated into two groups, namely, the testability analysis and the 
fault-isolation analysis. In addition, the lists of all components, dependencies, and a wide 
variety of other lists are also available from the output. The amount of paper consumed 
can become excessive, but the reports can be printed separately. Our primary interest is in 
the testability analysis section which provides 24 different measures of testability. All the 
results are normalized to provide the user with an idea of how the measures compare 
relatively. Most of the measures are slightly esoteric, but several provide very information 
on what to concentrate and on how to improve the inherent testability. The outputs, that 
are the most informative, are the operational isolation measures. These are commonly 
referred to as fault-isolation levels. These are one of the means of stating the required 
testability specifications in the SOW of government contracts. They are the primary FOM 
for inherent testability. The two primary results give the fault-isolation for a given ambiguity 
group size. One output considers the weighting of the failure rates while the other does 
not. This allows for additional flexibility for the specifications to achieve desired testability 
levels. STAMP provides information on ambiguity groups such as number, size and 
component members. One type of output, that is worth noting, is the listing of excess tests 
and redundant tests. This information is very useful when the number of test nodes 
available is limited by some other factor such as connector pins. Components and tests 
that comprise feedback loops are also listed. The user's manual states that, in addition to 
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listing the loops, additional tests are identified that could be in dealing with the loops. We 
could not find these suggestions in any of the outputs that were supplied to us. These are 
the most useful of the testability analysis outputs. Additional outputs are available that 
describe a variety of other conditions and parameters. 

The fault-isolation analysis provides the information that a technician would use in 
the isolation of a fault. Lists are given which identify the tests that will be bad given a 
failure in a particular component. Probabilities of failure figures are also given for all 
components and tests. A tabular decision tree and a graphical tree can be produced that 
detail the steps a technician would follow in the fault isolation procedure. The procedure 
can be affected by different weightings and options associated with test time, test cost, test 
groupings, component groupings, etc. Finally, a summary of the testing procedure in terms 
of the number of steps required to isolate faults is given. 

With the use of dependency modeling, STAMP can also analyze any type of circuit 
regardless of whether it is digital, analog, or hybrid. The drawback to this is the extensive 
amount of modeling that must be performed to properly analyze analog and hybrid circuits. 
The major feature missing from STAMP is the lack of information on breaking up feedback 
loops. The most useful output provided is the data on fault isolation levels related to 
ambiguity group size. The extensive output information for about every conceivable seems 
excessive, but may find application in different situations. 
 
NOTE: STAMP will only be an effective tool for incorporating testability in the design 

phase if it is available for use by the design personnel. The time needed to 
obtain the results and the need to experiment with many different testing 
scenarios makes this a necessity. 

 
CRITERIA and SCORES for STAMP: 
 
(1) 10: The operational isolation measures for both the consideration or exclusion of 

failure rates is the most result. 
(2) 0: No suggestions are provided for the breaking of feedback loops. This is a 

major drawback since the existence of feedback loop is a primary contributor 
to poor testability. Invariably all real world CCAs will have feedback loops. 

(3) 6: The listing of redundant and excessive tests is very useful for large designs 
where all possible paths to the output tests are not always clear. However, no 
suggestions are made regarding the placement of additional tests. 

(4) 9: STAMP provides detailed listings of every aspect of the dependencies, 
ambiguity groupings, etc. 
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(5) 

(7) 

(8) 

8: Detailed test procedures are given in decision tree form. 
(6) 8: The existence of a CAD interface with Schema can make data input easier. 

The flexibility of the labeling of components and tests makes data entry and 
verification easier. 

4: The development of the dependency model for complex 
circuits can become very tedious and time consuming. 

N/A: We cannot evaluate this aspect of STAMP since we did not 
actually use the program. 

 
IX. I-CAT 

 
I-CAT, which stands for Intelligent Computer Aided Testing, is a model based expert 

system designed for fault-diagnosis applications. I-CAT is a software program from 
Automated Technology Systems Corporation. We ran I-CAT under SunView on a Sun 
SPARCstation 1 with 8 MBytes RAM installed and a color monitor. Although I-CAT is 
primarily designed for fault-diagnosis, it has several features that make it attractive for 
performing testability analysis. I-CAT also requires essentially the same type of models as 
those required by STAT and STAMP. The only difference is that I-CAT refers to the model 
as a functional model rather than a dependency model, although both contain the same 
information. 

The model information is entered into I-CAT through a graphical interface. I-CAT 
defaults to starting all component labels with a 'C'. This can be altered to anything that is 
considered appropriate by the user. When test nodes are placed in the diagram, they can 
have any label that has not already been used. Since the model can be seen, it is easier to 
debug the input data with I-CAT than other programs. However, this is not always the case 
with large, cumbersome models. Even when using the grid to aid in the alignment of 
connecting lines, it is often difficult to make the connections if the view is not zoomed in. 
Any open lines resulting from these bad connections have the same effect as in a real 
circuit since the signal path is broken. These are sometimes difficult to spot unless the 
view is zoomed in quite close. Trying to maneuver around a large model can be frustrating 
due to the lack of a dynamic scroll. However, I-CAT encourages the use of nested models 
to make the model easier to create, edit, and view. Any component can contain a 
substructure that can consist of another model. I-CAT contains a built-in syntax checker 
that verifies the graphical model for connectivity errors. This is essential since the 
graphical interface can sometimes be deceiving. Along with the functional model, various 
other parameters may be entered, such as component cost, component failure rate, and 
test cost. 
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I-CAT's development tools generate a wide variety of outputs that have many uses. 
We focus primarily on the testability analysis data. Several pertinent input options are 
available to the user that have an effect on the testability analysis, namely, whether or not 
to allow multiple faults, whether or not to use only the assigned test nodes, and whether or 
not to test inside all the substructures. If the assigned test nodes are not used, the number 
of test nodes to use may be entered. The primary outputs of the testability analysis are the 
line tree and analysis report. The line tree provides a graphical representation of the 
testing procedure. This is also given in other forms such as a bar tree and a flow chart. 
The analysis report contains statistical information on the cost of diagnosis, the 
replacement costs, and the ambiguity group sizes. Statistics such as variance and 
standard deviation are given. The ambiguity group information contains no information 
about which components belong to which group. This makes it difficult to modify a design 
to have smaller ambiguity groups. Information is also provided on feedback loops and test 
nodes. I-CAT identifies feedback loops and the components that comprise each loop. No 
suggestions are given about where to break the loops. The test node data is the most 
useful of the testability analysis outputs. It details which nodes are used, not used, and any 
additional nodes that may be required. The last output is only given if the assigned test 
nodes are ignored. It is not clear what testability parameter of the model is being 
maximized by the choice of test nodes. There are no outputs that give the testability of the 
model in terms of fault coverage and ambiguity group sizes. These two aspects are the 
important ones for DFT and it is unfortunate that these are not available from I-CAT. I-CAT 
can also produce diagnostic programs in various languages, test requirement documents 
(TRD), netlist information, and a Personal ATLAS Workstation (PAWS) data base. 

I-CAT also has several additional features that deserve mention, although not 
directly related to design for testability. These are a troubleshooter, fault simulator, and a 
rule editor. The troubleshooter is an interactive graphical interface for diagnostics. The 
user enters components known to be good and the results of tests. The troubleshooter can 
direct a technician on how to proceed with the testing of a device. This is all accomplished 
through extensive dialog boxes that are full of information previously entered into I-CAT. 
The symptoms reported at test nodes can also be entered into I--CAT. The user can even 
step backward through a diagnostic session. Perhaps the most important aspect of the 
troubleshooter is that the failure information can be saved to create a history of 
components that fail. The fault simulator can be used to compare the testing strategies 
used by technicians and the strategies offered by I-CAT. I-CAT randomly introduces a fault 
into the model and it is up to the user to find its location. The user can keep track of the 
number of steps required to isolate a fault and then let I-CAT find the fault. This way a 
technician can train on a particular circuit without having to damage the actual hardware. 
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The rule editor is probably what distinguishes I-CAT from the other testability tools. 
Information on all aspects of the tests and the testing procedure is entered through the rule 
editor. The parameters associated with tests range from the dimensions of the measured 
quantities to the probabilities of test results. These quantities along with the failure history 
of the model from the troubleshooter can be used to increase the quality of the testing 
procedure. These features are primarily concerned with manual testing or any type of 
testing where operator intervention is necessary. 

With functional modeling, I-CAT can also analyze all types of circuits whether they 
are analog, hybrid, or digital. Once again the drawback to this is the extensive amount of 
modeling required for analog and hybrid circuits. Although I-CAT is primarily a fault 
diagnosis tool, the information on test node selection and feedback loops is informative . 
However, the lack of fault isolation parameters and details about ambiguity groups make I-
CAT better suited for establishing testing procedures once the circuits are designed. 
 
CRITERIA and SCORES for I-CAT: 
 
(1) 0 : No final testability measure is given. 
(2) 0 : No information on where to break feedback loops. 

(3) 9 : The details concerning test nodes are the most useful of 
all the outputs with regard to design for testability. 

(4) 4 : Only limited information on ambiguity groups and feedback 
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A: 

B: 

C: 

NOTE 
 

Before installing the STAT I Program on your PC, you must review and verify these 
five simple checklist steps. Please follow these installation instructions implicitly 
or you may experience difficulties in operating the STAT Program. 

 
I. VERIFY THAT YOUR P. C. HAS AT LEAST 540 K-BYTES OF AVAILABLE RAM SPACE 

AFTER THE P. C. HAS BEEN BOOTED. This is of prime concern, since this is the 
minimum amount of FREE RAM required for execution of the STAT I Program. 
Remember, a certain amount of RAM is always allocated to DOS and resident programs. 
This can be verified through the use of the use of the "CHKDSK" or "MEM", MS-DOS 
commands and observing the "free space available". 

 
For those installations being performed on machines whose operating system software has 
been upgraded to MS-DOS Version 5.0, it is necessary to verify that your system has been 
properly configured to operate STAT I. This should be done in the following steps: 
 

Verify that your system's CONFIG.SYS file contains the statement 
DEVICE=C:\DOS\SETVER.EXE, where C:\DOS represents the directory on your 
system that contains the executable file SETVER.EXE. If it does not contain this 
statement, then please properly modify it now. 

 
If it was necessary for you to modify your CONFIG.SYS file, then you must re-boot 
your system. This can be done by depressing the Contrl-Alt and DEL keys 
simultaneously. 

 
Copy the DSI supplied batch file SV.BAT resident in the root directory of the last 
disk of the STAT I Installation Diskettes, to your PC's root directory (C:\). This Batch 
file appends STAT's file names to your systems SET VERSION file. After executing 
this command you must once again re-boot your system. 

 
II Verify that your P. C.'s hard disk drive has had proper periodic housekeeping and that 

there are NO UN-CONTROLLED BAD SECTORS, LOST CHAINS or CLUSTERS. 
This is easily determined and remedied through the use of the MS-DOS command 
"CHKDSK". Please consult your Computer Systems Manager or your DOS operator's 
guide. 

 
III  Verify that your P. C.'s "CONFIG.SYS" file in the "root" directory of your P.C. has 'files' 

set to at least 40 and 'buffers' set to the following table depending on the storage 
capacity of your hard disk drive: 

HARD DISK SIZE BUFFER SIZE

Less than 40 MB 20 
40 through 79 MB 30 
80 through 119 MB 40 
More than 120 MB 50 

There is an exception to this rule, and that is the case where your system is capable of 
utilizing cache memory". This caching is usually accomplished through the use of a 
caching program such as that which comes with MS-DOS 5.0 known as ,SMARTDRV In 
this case you should probably reduce the number of buffers to 10 or 20. 


